

General and Skewed General Variable Neighborhood Search Approaches for Integrated Planning and Scheduling

Universidade do Minho Escola de Engenharia

1. Introduction

- Planning and scheduling processes are strongly interrelated, but they are usually addressed separately.
- To achieve **global optimal solutions**, the related optimization problems must be addressed all together in an **integrated way** [1].
- Here, we consider the Integrated Planning and Scheduling Problem (IPSP), as it was firstly proposed in [2].

2. Objectives

- New **heuristics and metaheuristic methods** to tackle the IPSP on parallel and identical machines [2];
- Innovative neighborhood structures specially designed for the IPSP to be used within Variable Neighborhood Search algorithm (VNS) and its variants General VNS (GVNS) and Skewed General VNS (SGVNS).

3. Problem Definition

The entire time horizon (*T*) is divided into τ time periods of length equal to $P \in \mathbb{N}$. There are |M| parallel and identical machines, where the set of jobs *N* should be processed. Each job $j \in N$ has five attributes: processing time $-p_j \in \mathbb{N}$; release date $-r_j \in T$; due date $-d_j \in T$; penalty factors incurred when a job is completed before and after its due date $-e_{j}$, $l_j \in \mathbb{N}$, respectively.

Machines available time in each <i>t</i> period (<i>bins</i>)	Machine 1
Jobs processing time (<i>objects/packages</i>)	Job 1 Job 2 () Job N
The objective of this IPSI penalties (w_t), where t rep will be processed: $w_t = e$	2 is to minimize the sum of all resents the period in which job j

earliness tardiness

4. Neighborhood Structures

Table 1. Set of 12 jobs and attributes (example).

Fig. 1. A feasible solution S.

FCT

para a Ciência e a Tecnologia

CENTROAL GORITM

5. Computational Experiments

Experiments were performed on benchmark instances divided into three sets: **small jobs** (set A), **large jobs** (set C), and **half-half** (set B). Five runs for each instance (time limit of 5 seconds). The VNS, GVNS and SGVNS results were compared with the best results from **Exact Methods (EM)** [3].

NORTE

2020

2020

0	ј M1				80		8	
1		1	2			3	4	
2		5	9	6			7	
: 3	9	1	0	11 6		12	8	

Fig. 2. \mathcal{N}_1 – Insertion of one job in another period. Solution $S' \in \mathcal{N}_1(S)$.

0 H	٨	11	80		8	
t = 1	5	6 10		3	4	
t = 2	1 10	2 5			7	8 4
t = 3	9 10	11 6		12		

Fig. 4. \mathcal{N}_3 – Exchange between two different bins of different periods. Solution $S' \in \mathcal{N}_3(S)$.

Ŷ	0 M1				M2		
t = 1		5		3	4		
t = 2 2	5 6				7	4	
t = 3 9	10	11	6	12			

Fig. 6. \mathcal{N}_{5} – Exchange between two jobs from necessarily adjacent periods. Solution $S' \in \mathcal{N}_{\varsigma}(S)$.

Mário Leite, Telmo Pinto, Cláudio Alves

{mario.leite, telmo, claudio}@dps.uminho.pt

Fig. 3. \mathcal{M}_2 – Exchange between two jobs from different periods. Solution $S' \in \mathcal{N}_2(S)$.

P		M1	80		M2		
t = 1	1	4		3	2	5	
t = 2	6				7	8 4	
t = 3	9 1	0 11 6		12			

Fig. 5. \mathcal{M}_{4} – Exchange between two jobs from the same period, but from different machines, and an insertion of another job in the considered period. Solution $S \in \mathcal{M}_{4}(S)$.

	2	M1		80			M2				
t = 1		1		4			3	2			
t = 2	51	5	•	6				7			4
t = 3	9	1	0	Γ.	11 ⁶		12				

Fig. 7. \mathcal{N}_6 – Exchange between two jobs, from the same period, but from different machines. Solution $S' \in \mathcal{N}_6(S)$.

6. Conclusions

The proposed approaches are able to obtain solutions very close to the optimal solutions (**low** values of the **optimality gap**). The major core of these approaches is the **very short time to achieve good quality solutions**, that are quite near the optimal solutions.

7. References

- W. Shen, L. Wang, and Q. Hao. Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(4):563–577, 2006.
- [2] T. Kis and A. Kovács. A cutting plane approach for integrated planning and scheduling. Computers & Operations Research, 39(2):320–327, 2012.
- [3] J. Rietz, C. Alves, N. Braga, and J. Valério de Carvalho. An exact approach based on a new pseudopolynomial network flow model for integrated planning and scheduling. Computers & Operations Research, 76:183-194, 2016.