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2. Objectives
▪ New heuristics and metaheuristic methods to tackle the

IPSP on parallel and identical machines [2];

▪ Innovative neighborhood structures specially designed for

the IPSP to be used within Variable Neighborhood Search

algorithm (VNS) and its variants General VNS (GVNS) and

Skewed General VNS (SGVNS).

1. Introduction
▪ Planning and scheduling processes are strongly interrelated,

but they are usually addressed separately.

▪ To achieve global optimal solutions, the related

optimization problems must be addressed all together in

an integrated way [1].

▪ Here, we consider the Integrated Planning and Scheduling

Problem (IPSP), as it was firstly proposed in [2].

The entire time horizon (T) is divided into ᴛ time periods of

length equal to P ∈ ℕ. There are |M| parallel and identical

machines, where the set of jobs N should be processed. Each

job j ∈ N has five attributes: processing time – pj ∈ ℕ; release

date – rj ∈ T; due date – dj ∈ T; penalty factors incurred when

a job is completed before and after its due date – ej, lj ∈ ℕ,

respectively.
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The proposed approaches are able to obtain solutions very

close to the optimal solutions (low values of the optimality

gap). The major core of these approaches is the very short

time to achieve good quality solutions, that are quite near the

optimal solutions.

The objective of this IPSP is to minimize the sum of all

penalties (wt
j), where t represents the period in which job j

will be processed:
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Experiments were performed on benchmark instances divided into three

sets: small jobs (set A), large jobs (set C), and half-half (set B). Five runs for

each instance (time limit of 5 seconds). The VNS, GVNS and SGVNS results

were compared with the best results from Exact Methods (EM) [3].
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Fig. 2. 𝒩1 – Insertion of one job in another

period. Solution S’ ∈𝒩1(S).

Fig. 8. Average optimality gap (in %).

Fig. 3. 𝒩2 – Exchange between two jobs from

different periods. Solution S’ ∈𝒩2(S).

Fig. 4. 𝒩3 – Exchange between two different

bins of different periods. Solution S’ ∈𝒩3(S).
Fig. 5. 𝒩4 – Exchange between two jobs from

the same period, but from different machines,

and an insertion of another job in the

considered period. Solution S’ ∈𝒩4(S).

Fig. 6. 𝒩5 – Exchange between two jobs from

necessarily adjacent periods. Solution S’ ∈
𝒩5(S).

Fig. 7. 𝒩6 – Exchange between two jobs, from

the same period, but from different machines.

Solution S’ ∈𝒩6(S).Fig. 1. A feasible solution S.

Table 1. Set of 12 jobs and attributes (example).

Fig. 9. Average computational time (in seconds).

Fig. 10. Number of instances solved up to optimality.
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